Keyword: wakefield
Paper Title Other Keywords Page
TUP010 Double-Bunches for Two-Color Soft X-Ray Free-Electron Laser at the MAX IV Laboratory ion, linac, electron, laser 269
 
  • J. Björklund Svensson, O. Lundh
    Lund University, Lund, Sweden
  • J. Andersson, F. Curbis, M. Kotur, F. Lindau, E. Mansten, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The ability to generate two-color free-electron laser (FEL) radiation enables a wider range of user experiments than just single-color FEL radiation. There are different schemes for generating the two colors, the original being to use a single bunch and two sets of undulators with different K-parameters. A development of the scheme has recently been shown, where two separate bunches in the same RF bucket are used for lasing at different wavelengths. We here investigate the feasibility of accelerating and compressing a double-bunch time structure generated in the photocathode electron gun for subsequent use in a soft X-ray FEL at the MAX IV Laboratory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP016 Beam-Dynamics Analysis of Long-Range Wakefield Effects on the SCRF Cavities at the Fast Facility ion, cavity, HOM, simulation 280
 
  • Y.-M. Shin
    Northern Illinois University, DeKalb, Illinois, USA
  • K. Bishofberger, B.E. Carlsten, F.L. Krawczyk
    LANL, Los Alamos, New Mexico, USA
  • A.H. Lumpkin, J. Ruan, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the subcontract (contract No: G2A62653) of LANL-LDRD program and DOE contract No. DEAC02-07CH11359 to the Fermi Research Alliance LLC.
Long-range wakefields in superconducting RF (SCRF) cavities create complicated effects on beam dynamics in SCRF-based FEL beamlines. The driving bunch excites effectively an infinite number of structure modes (including HOMs) which oscillate within the SCRF cavity. Couplers with loads are used to damp the HOMs. However, these HOMs can persist for long periods of time in superconducting structures, which leads to long-range wakefields. Clear understanding of the long-range wakefield effects is a critical element for risk mitigation of future SCRF accelerators such as XFEL at DESY, LCLS-II XFEL, and MaRIE XFEL. We are currently developing numerical tools for simulating long-range wakefields in SCRF accelerators and plan to experimentally verify the tools by measuring these wakefields at the Fermilab Accelerator Science and Technology (FAST) facility. This paper previews the experimental conditions at the FAST 50 MeV beamline based on the simulation results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP023 Recent Developments and Plans for Two Bunch Operation with up to 1 μs Separation at LCLS ion, photon, experiment, gun 288
 
  • F.-J. Decker, K.L.F. Bane, W.S. Colocho, A.A. Lutman, J.C. Sheppard
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
To get two electron bunches with a separation of up to 1 microsecond at the Linac Coherent Light Source (LCLS) is important for LCLS-II developments. Two lasing bunches up to 220 ns have been demonstrated. Many issues have to be solved to get that separation increased by a factor of 5. The typical design and setup for one single bunch has to be questioned for many devices: RF pulse widths have to be widened, BPMs diagnostic can see only one bunch or a vector average, feedbacks have to be doubled up, the main Linac RF needs to run probably un-SLEDed, and special considerations have to be done for the Gun and L1X RF.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP035 CSR Wake Fields and Emittance Growth with a Discontinuous Galerkin Time Domain Method ion, vacuum, radiation, synchrotron 317
 
  • D. A. Bizzozero, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by DESY.
Coherent synchrotron radiation (CSR) is an essential consideration in modern accelerators and related electromagnetic structures. We present our current method to examine CSR in the time domain. The method uses a 2D Discontinous Galerkin (DG) discretization in the longitudinal and transverse coordinates (z,x) with a Fourier decomposition in the transverse coordinate y. After summation over modes, this treatment describes all electromagnetic field components at each space-time coordinate (z,x,y,t). Additionally, by alignment of mesh element interfaces along a source reference orbit, DG methods can handle discontinuous or thin sources in the transverse x direction. We present an overview of our method, illustrate it by calculating wake functions for a bunch compressor, and discuss a method for estimating emittance growth from the wake fields in future work.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP050 Beam Driven Acceleration and RF Breakdown in Photonic Band Gap Travelling Wave Accelerator Structure ion, experiment, electron, acceleration 333
 
  • J. Upadhyay, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
 
  We report the results of an experiment to demonstrate excitation of wakefields and wakefield acceleration in a photonic band gap (PBG) accelerating structure. The experiment was conducted at the Argonne Wakefield Accelerator (AWA) facility. For modern X-ray free electron lasers (FELs), preservation of the electron beam quality during the beam acceleration is of crucial importance. Therefore, new accelerating structures must be designed with careful attention paid to the suppression of wakefields. PBG structures are widely studied due to their ability to exclude higher order modes. A 16-cell travelling-wave normal conducting PBG structure operating at 11.700 GHz is installed at the AWA beam line. We passed a high-charge single bunch or multiple bunch train through the structure that generated wakefields and evaluated the effect of these wakefields on a low-charge witness beam. We also passed high-charge multiple bunch trains through the structure that generated up to 100 MV/m accelerating gradient and studied the RF breakdown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP054 Preparations for Installation of the Double Emittance-Exchange Beamline at the Argonne Wakefield Accelerator Facility ion, emittance, simulation, experiment 340
 
  • G. Ha
    PAL, Pohang, Republic of Korea
  • M.E. Conde, D.S. Doran, W. Gai, J.G. Power
    ANL, Argonne, Illinois, USA
 
  Funding: This work is supported by Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Preparations to upgrade the single EEX beamline at the Argonne Wakefield Accelerator (AWA) facility to a double EEX beamline are underway. The single EEX beamline recently demonstrated exchange-based longitudinal bunch shaping (LBS) which has numerous applications including high-energy physics linear colliders, x-ray FELs, and intense radiation sources. The exchange-based method can generate arbitrary LBS in the ideal case but has limitations in the real case. The double EEX beamline was proposed as a means to overcome the limitations of single EEX due to transverse jitter and large horizontal emittance. In this paper, we present the current status of beamline design and installation and simulation results for the planned experiments: collinear wakefield acceleration with tailored beams and tunable bunch compression without the double-horn feature.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)