Keyword: scattering
Paper Title Other Keywords Page
MOP056 Design of Apparatus for a High-Power-Density Diamond Irradiation Endurance Experiment for XFELO Applications ion, radiation, vacuum, detector 185
  • S.P. Kearney, K.-J. Kim, T. Kolodziej, R.R. Lindberg, D. Shu, Yu. Shvyd'ko, D. Walko, J. Wang
    ANL, Argonne, Illinois, USA
  • S. Stoupin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
We have designed a diamond irradiation setup capable of achieving multiple kW/mm2 power density. The setup was installed at the 7-ID-B beamline at the Advanced Photon Source (APS) for a successful irradiation experiment, testing the capability of diamond to endure x-ray free electron laser oscillator (XFELO) levels of irradiation (≥ 10 kW/mm2) without degradation of Bragg reflectivity.* Focused white-beam irradiation (50 μm x 20 μm spot size at 12.5 kW/mm2 power density) of a diamond single crystal was conducted in a vacuum environment of 1x10-8 Torr for varying durations of time at different spots on the diamond, and also included one irradiation spot during a spoiled vacuum environment of 4x10-6 Torr. Here we present the apparatus used to irradiate the diamond consisting of multiple subassemblies: the fixed masks, focusing optics, gold-coated UHV irradiation chamber, water-cooled diamond holder, chamber positioning stages (with sub-micron resolution) and detector.
* T. Kolodziej et al., Free Electron Laser Conf. 2017.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUP071 Study on Second Harmonic Generation in SiC Using Infrared FEL ion, FEL, experiment, detector 382
  • S. Tagiri
    Kyoto Univeristy, Kyoto, Japan
  • T. Kii, H. Ohgaki, H. Zen
    Kyoto University, Kyoto, Japan
  Mode-selective phonon excitation (MSPE) is an attractive method for studying the lattice dynamics (e.g. electron-phonon interaction and phonon-phonon interaction). In addition, MSPE can control electronic, magnetic, and structural phases of materials. In 2013, we have directly demonstrated MSPE of a bulk material (6H-SiC) with MIR-FEL (KU-FEL) by anti-Stokes (AS) Raman-scattering spectroscopy. Recently, we have certified that the Sum Frequency Generation (SFG) also occurs with AS Raman scattering. For distinguishing between the AS Raman scattering and SFG, we need to know the nonlinear susceptibility and transmittance. The coefficients can be measured by the Second Harmonic Generation (SHG) spectroscopy. In this paper, the outline of the measurement system and the preliminary results with a 6H-SiC sample are reported.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEA02 Model of Photocathode for CW Electron Gun ion, electron, emittance, cathode 394
  • P.W. Huang, W.-H. Huang, C.-X. Tang
    TUB, Beijing, People's Republic of China
  Most of the proposed CW guns for free electron lasers use semiconductors as the photocathode due to their high quantum efficiency and potentially low thermal emittance. We manage to establish a model to explain the photoemission of semiconductors with incident photon energy above or below the theoretical threshold and derive the expression for quantum efficiency and thermal emittance. For the incident photon energy near or below the threshold of the cathode, things will be subtle and we should be careful to consider the details we used to neglect. The results of quantum efficiency and thermal emittance agree well with the published work. We also focus on the degradation of the semiconductors and propose a model to examine the development of the thermal emittance. We mainly consider the effect brought by the surface reactions with poisoning gases. The variation of quantum efficiency with time is well-consistent with experiment data. We also present the calculated results of thermal emittance, showing a decline with time. Similar results are presented with typical value of electric field in DC gun and RF gun.  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEP016 Modeling of Diamond Field-Emitter Arrays for High-Brightness Photocathode Applications ion, electron, simulation, cathode 454
  • C. Huang, H.L. Andrews, B.K. Choi, R.L. Fleming, T.J. Kwan, J.W. Lewellen, D.C. Nguyen, K.E. Nichols, V.N. Pavlenko, A. Piryatinski, D.Y. Shchegolkov, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  Funding: Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory (LANL) under Contract No. DE-AC52-06NA25396. Work supported by the LDRD program at LANL.
Dielectric Laser Accelerator (DLA) is capable of generating high output power for an X-ray free-electron laser (FEL), while having a size 1-2 orders of magnitude smaller than existing Radio-Frequency (RF) accelerators. Single Diamond Field-Emitter (DFE) or array of such emitters (DFEA) can be employed as high-current ultra-low-emittance photocathodes for compact DLAs. We are developing a first principle semi-classical Monte-Carlo (MC) emission model for DFEAs that includes the effects of carriers' photoexcitation, their transport to the emitter surface, and the tunnelling through the surface. The electronic structure size quantization affecting the transport and tunnelling processes within the sharp diamond tips is also accounted for. These aspects of our model and their implementation and validation, as well as macroscopic electromagnetic beam simulation of DFE are discussed.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)