Keyword: MMI
Paper Title Other Keywords Page
MOC03 Commissioning and First Lasing of the European XFEL ion, FEL, linac, electron 9
 
  • H. Weise, W. Decking
    DESY, Hamburg, Germany
 
  Funding: Work supported by the respective funding agencies of the contributing institutes; for details please see http:www.xfel.eu
The European X-ray Free-Electron Laser (XFEL) in Hamburg, Northern Germany, aims at producing X-rays in the range from 260 eV to 24 keV out of three undulators that can be operated simultaneously with up to 27,000 pulses per second. The XFEL is driven by a 17.5 GeV superconducting linac. This linac is the worldwide largest installation based on superconducting radio-frequency acceleration. The design is using the so-called TESLA technology which was developed for the superconducting version of an international electron positron linear collider. After eight years of construction the facility is now brought into operation. First lasing was demonstrated in May 2017. Experience with the super-conducting accelerator as well as beam commissioning results will be presented. The path to the first user experiments will be laid down.
 
slides icon Slides MOC03 [5.418 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOC03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP044 Commissioning Status of the European XFEL Photon Beam System ion, FEL, photon, undulator 144
 
  • F. Le Pimpec
    XFEL. EU, Hamburg, Germany
 
  The European XFEL located in the Hamburg region in Germany has finished its construction phase and is currently being commissioned. The European XFEL facility aims at producing X-rays in the range from 260~eV up to 24~keV out of three undulators that can be operated simultaneously with up to 27000~pulses/second. The FEL is driven by a 17.5~GeV linear accelerator based on TESLA-type superconducting accelerator modules. The accelerator has finished its first commissioning phase and is currently delivering photon beam to the experimental areas for commissioning in view to the user operation. This paper presents the status of the photon beam system from the undulators to the 3 experimental areas as well as the status of each instruments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)