Keyword: gun
Paper Title Other Keywords Page
MOP041 Commissioning of FEL-Based Coherent Electron Cooling System ion, electron, SRF, FEL 132
 
  • V. Litvinenko, Z. Altinbas, R. Anderson, S.A. Belomestnykh, K.A. Brown, J.C.B. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, D.M. Gassner, T. Hayes, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, Y.C. Jing, D. Kayran, R. Kellermann, R.F. Lambiase, G.J. Mahler, M. Mapes, A. Marusic, W. Meng, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, G. Narayan, P. Orfin, D. Phillips, I. Pinayev, T. Rao, D. Ravikumar, J. Reich, G. Robert-Demolaize, T. Roser, S.K. Seberg, F. Severino, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, V. Soria, R. Than, C. Theisen, J.E. Tuozzolo, J. Walsh, E. Wang, G. Wang, D. Weiss, B. P. Xiao, T. Xin, A. Zaltsman, Z. Zhao
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
  • K. Mihara
    Stony Brook University, Stony Brook, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
  • W. Xu
    PKU, Beijing, People's Republic of China
 
  Funding: DoE NP office, grant DE-FOA-0000632, NSF grant PHY-1415252
In this talk we are presenting the most recent results from the commissioning of unique Coherent Electron Cooling system, which is using an FEL amplifier to facilitate cooling of hadrons by an electron beam. We present achieved results as well as changes we encountered in the process.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC05 Start-to-End Simulations for an X-Ray FEL Oscillator at the LCLS-II and LCLS-II-HE ion, FEL, electron, photon 247
 
  • W. Qin, K.L.F. Bane, Y. Ding, Z. Huang, G. Marcus, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • S. Huang, K.X. Liu
    PKU, Beijing, People's Republic of China
  • K.-J. Kim, R.R. Lindberg
    ANL, Argonne, Illinois, USA
 
  The proposed high repetition-rate electron beam from the LCLS-II and LCLS-II High Energy (LCLS-II-HE) upgrade are promising sources as drivers for an X-ray FEL Oscillator (XFELO) operating at both the harmonic and fundamental frequencies. In this contribution we present start-to-end simulations for an XFELO operating at the fifth harmonic with 4 GeV LCLS-II beam and at the fundamental with 8 GeV LCLS-II-HE beam. The electron beam longitudinal phase space is optimized by shaping the photoinjector laser and adjusting various machine parameters. The XFELO simulations show that high-flux output radiation pulses with 1010 photons and 3 meV (FWHM) spectral bandwidth can be obtained with the 8 GeV configuration.  
slides icon Slides TUC05 [3.802 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUC05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP022 Modeling and Optimization of the APS Photo-Injector Using OPAL for High Efficiency FEL Experiments ion, linac, electron, simulation 284
 
  • C.C. Hall, D.L. Bruhwiler, S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
  • A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • P. Musumeci, Y. Park
    UCLA, Los Angeles, USA
  • Y. Sun, A. Zholents
    ANL, Argonne, Illinois, USA
 
  Funding: This work was carried out with support for the United State Department of Energy, Office of Scientific Research, under SBIR contract number DE-SC0017161.
The Linac Extension Area (LEA) is a new beamline planned as an extension of Argonne's APS linac. An S-band 1.6-cell copper photo-cathode (PC) RF gun has been installed and commissioned at the APS linac front end. The PC gun will provide a beam to the LEA for accelerator technology development and beam physics experiments, in interleaving with a thermionic RF gun which provides a beam for APS storage ring operations. Recently an experiment was proposed to demonstrate the TESSA high-efficiency concept at LEA. In support of this experiment, we have begun simulating the photo-injector using the code OPAL (Object-oriented Particle Accelerator Library). In this paper, we first benchmark OPAL simulations with the established APS photo-injector optimization using ASTRA and ELEGANT. Key beam parameters required for a successful high-efficiency TESSA demonstration are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP023 Recent Developments and Plans for Two Bunch Operation with up to 1 μs Separation at LCLS ion, photon, wakefield, experiment 288
 
  • F.-J. Decker, K.L.F. Bane, W.S. Colocho, A.A. Lutman, J.C. Sheppard
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
To get two electron bunches with a separation of up to 1 microsecond at the Linac Coherent Light Source (LCLS) is important for LCLS-II developments. Two lasing bunches up to 220 ns have been demonstrated. Many issues have to be solved to get that separation increased by a factor of 5. The typical design and setup for one single bunch has to be questioned for many devices: RF pulse widths have to be widened, BPMs diagnostic can see only one bunch or a vector average, feedbacks have to be doubled up, the main Linac RF needs to run probably un-SLEDed, and special considerations have to be done for the Gun and L1X RF.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP034 Novel Aspects of Beam Dynamics in CeC SRF Gun and SRF Accelerator ion, electron, simulation, cavity 313
 
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • T. Hayes, Y.C. Jing, D. Kayran, V. Litvinenko, G. Narayan, I. Pinayev, F. Severino, K.S. Smith, G. Wang
    BNL, Upton, Long Island, New York, USA
  • K. Mihara
    Stony Brook University, Stony Brook, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: DoE NP office, grant DE-FOA-0000632, NSF grant PHY-1415252.
A 15 MeV CW SRF accelerator had been commissioned at Brookhaven National Laboratory to test the coherent electron cooling concept. The accelerator consists of an SRF 113-MHz photoemission gun, two 500 MHz bunching cavities and a 704-MHz 5-cell SRF linac. In this paper we describe our experience with this system with focus on unusual phenomena, such as multipacting in the SRF gun. We also discuss issues of wakefields in the CeC accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA01 European XFEL Injector Commissioning Results ion, emittance, FEL, operation 389
 
  • B. Beutner
    DESY, Hamburg, Germany
 
  In the first commissioning phase of the European XFEL SASE FEL driver linac, we demonstrated the design goals for the injector section. These goals include reliable operation of sub-systems and feasible beam parameters like emittance and bunch length of the beam produced by the RF gun. Of particular interest is the operation of long bunch trains with up to 2700 bunches with a 4.5 MHz repetition rate. In this presentation we will provide an overview of our experiences from the injector commissioning run including beam dynamics studies, diagnostics, and system performance.  
slides icon Slides WEA01 [4.633 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA04 Novel Concepts of a High-Brightness Photoinjector RF Gun ion, cathode, electron, brightness 397
 
  • S.V. Kuzikov, O.A. Ivanov, A.A. Vikharev, A.L. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
  • S.P. Antipov
    Euclid Beamlabs LLC, Bolingbrook, USA
  • S.P. Antipov
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  We propose here a program to design and manufacture a high performance, advanced source of electrons having high beam brightness (>1016 A/m2) and high bunch charge (~100 pC). Three innovations are being considered: 1) the use of a high peak cathode field, short-pulse RF gun; 2) the use of multi-layered diamond photocathode at low temperature; and 3) the utilization of THz ultrafast field emission gating. High peak cathode field is necessary to achieve a high brightness (low emittance) beam to be accelerated to relativistic energies before space-charge effects lengthen the bunch. The multilayered diamond photocathode is needed to obtain high QE with long wavelength laser in the first doped layer, beam cooling in the next layer, and negative electron affinity at the emission layer. High field single cycle THz pulses, produced by means of laser light rectification in a nonlinear crystal, allow to avoid a UV laser, provide high field emission charge (up to nC) and ~1 GV/m pre-acceleration of subpicosecond bunches.  
slides icon Slides WEA04 [4.039 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA05 Higher Fields and Beam Energies in Continuous-Wave Room-Temperature VHF RF Guns ion, cathode, electron, brightness 401
 
  • F. Sannibale, J.M. Byrd, D. Filippetto, M.J. Johnson, D. Li, T.H. Luo, C.E. Mitchell, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The development in the last decade of MHz-class repetition rate free electron lasers (FELs), and ultrafast electron diffraction and microscopy (UED/UEM) applications, required new gun schemes capable of generating high-brightness beams at such high rates. The VHF-Gun, a 186 MHz room-temperature continuous-wave RF photogun developed at the Lawrence Berkeley Lab (LBNL) was an answer to that need. The VHF-Gun was constructed and tested in the APEX facility at LBNL successfully demonstrating all design parameters and the generation of FEL-quality electron beams. A close version of the APEX gun is in the final phase of fabrication at LBNL to operate as the electron source for the LCLS-II, the new SLAC X-ray FEL. The recently approved upgrade of the LCLS-II towards higher energies (LCLS-II HE) and the brightness-dependent UED and UEM applications would greatly benefit from an increased brightness of the electron source. Such performance upgrade can be obtained by increasing the electric field at the cathode and the beam energy at the gun exit. In this paper, we present and discuss possible upgrade options that would allow us to extend the VHF-Gun technology towards these new goals.
 
slides icon Slides WEA05 [4.320 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEA05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP003 Update on the Lifetime of Cs2Te Photocathodes Operated at FLASH ion, cathode, laser, operation 415
 
  • S. Schreiber, S. Lederer
    DESY, Hamburg, Germany
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  The photoinjector of the free-electron laser facility FLASH at DESY (Hamburg, Germany) uses Cs2Te photocathodes. We report on an update of the lifetime and quantum efficiency of cathodes operated at FLASH during the last years.  
poster icon Poster WEP003 [0.286 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP005 Coaxial Coupler RF Kick in the PITZ RF Gun ion, simulation, electron, cavity 422
 
  • Y. Chen, P. Boonpornprasert, J.D. Good, H. Huck, I.I. Isaev, M. Krasilnikov, A. Oppelt, H.J. Qian, Y. Renier, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Dohlus
    DESY, Hamburg, Germany
  • Q.T. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  We investigate a transverse RF kick induced by the transition between rectangular waveguide and coaxial line of the RF coupler in the 1.6-cell L-band normal conducting (NC) RF gun at the Photo Injector Test Facility at DESY, Zeuthen site (PITZ). A three-dimensional electromagnetic simulation shows the disturbed RF field distributions in the fundamental accelerating mode. Based on the 3D RF field map, an electron beam based characterization and quantification of the coaxial coupler RF kick in the PITZ gun is simulated. Preliminary results of the investigations are presented.  
poster icon Poster WEP005 [1.345 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP007 Electron Beam Asymmetry Compensation with Gun Quadrupoles at PITZ ion, quadrupole, electron, emittance 429
 
  • M. Krasilnikov, P. Boonpornprasert, Y. Chen, J.D. Good, M. Groß, H. Huck, I.I. Isaev, D.K. Kalantaryan, X. Li, O. Lishilin, G. Loisch, D.M. Melkumyan, A. Oppelt, H.J. Qian, Y. Renier, F. Stephan, Q.T. Zhao
    DESY Zeuthen, Zeuthen, Germany
  • G.A. Amatuni, B. Grigoryan
    CANDLE SRI, Yerevan, Armenia
  • G. Asova
    INRNE, Sofia, Bulgaria
  • Q.T. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  The electron beam asymmetry observed at the Photo Injector Test Facility at DESY in Zeuthen (PITZ) was traced back to multipole kicks in the gun section, namely around the location of the coaxial power coupler and the main solenoid. Several dedicated studies have been performed to quantify the kick location and strength. Based on these studies, two designs of correction quadrupole coils were proposed. The coils were fabricated and tested with an electron beam. The second updated design implies a two quadrupole setup on a frame installed around the gun coaxial coupler close to the main solenoid centre location. Skew and normal quadrupole magnets are powered independently, enabling flexibility in electron beam manipulations. By means of this setup, a more symmetric beam was obtained at several screens. This led also to more equal measured horizontal and vertical phase spaces and to even smaller overall emittance values. Some details of the gun quadrupole designs, magnetic measurements, and results of electron beam measurements including emittance optimization will be reported.  
poster icon Poster WEP007 [1.997 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP008 Beam Brightness Improvement by Ellipsoidal Laser Shaping for CW Photoinjectors ion, emittance, laser, cathode 432
 
  • H.J. Qian, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  High-brightness photoinjectors operating in a continuous wave (CW) mode are required for many advanced applications, such as CW X-ray FEL, ERL light source, electron coolers for hadron beams and electron-ion colliders and so on. Now, three types of CW electron guns are available: DC gun, SRF gun and normal conducting RF gun, which are under intense development in different institutes based on local expertise and application demands. Compared to pulsed guns, both beam energy and brightness from CW guns are compromised due to a lower acceleration gradient. Flattop laser shaping has been applied in both pulsed and CW guns to improve beam emittance. In this paper, ellipsoidal laser shaping is applied in CW photoinjectors to improve beam brightness, and preliminary ASTRA simulations are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP009 A Cryocooled Normal-Conducting and Superconducting Hybrid CW Photoinjector cavity, ion, SRF, cathode 436
 
  • H.J. Qian, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  Continuous wave (CW) photoinjectors have seen great progress in the last decades, such as DC gun, SRF gun and normal conducting VHF-band RF gun. New developments of CW guns are aiming higher acceleration gradient and beam energy for higher-beam brightness. One of the technical challenges for CW SRF guns is the compatibility of normal-conducting high QE cathodes and superconducting cavity. In this paper, a high gradient cryocooled CW normal-conducting gun is proposed to house the high QE cathode, and a SRF cavity nearby gives further energy acceleration. Preliminary ASTRA simulations of such a hybrid photoinjector are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP010 Beam Asymmetry Studies with Quadrupole Field Errors in the PITZ Gun Section ion, quadrupole, solenoid, experiment 440
 
  • Q.T. Zhao, G. Asova, P. Boonpornprasert, Y. Chen, J.D. Good, M. Groß, H. Huck, I.I. Isaev, D.K. Kalantaryan, M. Krasilnikov, X. Li, O. Lishilin, G. Loisch, D.M. Melkumyan, A. Oppelt, H.J. Qian, Y. Renier, T. Rublack, C. Saisa-ard, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • C. Saisa-ard
    Chiang Mai University, Chiang Mai, Thailand
  • Q.T. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  The Photo Injector Test Facility at DESY in Zeuthen (PITZ) was built to test and optimize high-brightness electron sources for free electron lasers (FELs) like FLASH and European XFEL. Although the beam emittance has been optimized and experimentally demonstrated to meet the requirements of FLASH and XFEL, transverse beam asymmetries, such as wing structures and beam tilts, were observed during many years of operation with different generations of guns. These cannot be explained by simulations with the rotationally symmetric gun cavities and symmetric solenoid fields. Based on previous RF coupler kick, solenoid field imperfection studies and coupling beam dynamics, the beam asymmetries most probably stem from rotated quadrupole field error in the gun section. A thin-lens static quadrupole model is applied in the RF gun section simulations to fit the position and intensity of quadrupole field errors by comparing the beam asymmetry directions in experiments and ASTRA simulations. Furthermore, by measuring the laser position movement at the photo cathode and the corresponding beam movement at downstream screens, the integrated quadrupole field strength can also be extracted.  
poster icon Poster WEP010 [1.856 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP014 Pulse Duration Measurement of Pico-second DUV Photocathode Driving Laser by Autocorrelation Technique Using Two-Photon Absorption in Bulk Material ion, laser, cathode, electron 447
 
  • H. Zen, T. Kii, K. Masuda, T. Nakajima, H. Ohgaki
    Kyoto University, Kyoto, Japan
 
  A multi-bunch, pico-second DUV photocathode drive laser system has been developed for photocathode operation of mid-infrared free electron laser facility, KU-FEL.* By using the laser, KU-FEL has already succeeded in first lasing under the photocathode operation.** The pulse duration of the photocathode driving laser is a quite important parameter because it determines the initial electron pulse duration on the cathode surface. However, the pulse duration of the photocathode driving laser had not been characterized. A very convenient pulse duration measurement method utilizing two-photon absorption in bulk material, which can be used for DUV laser pulses, has been proposed and demonstrated so far.*** In this study, a DUV nonlinear autocorrelator based on the proposed method was developed to measure the pulse duration of the DUV photocathode driving laser. As the result of measurement, the pulse duration was evaluated as 5.8±0.2 ps (FWHM). The principle of this method, experimental setup and measured results will be presented.
* H. Zen et al., Proc. of FEL2014, pp.828-831 (2015).
** H. Zen et al., Proc. of IPAC2016, pp.754-756 (2016).
*** C. Homann et al., Applied Physics B 104, 783 (2011).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP021 Preliminary Results of the Dark Current Modelling for the Polfel Superconducting Lead Photocathode ion, cathode, cavity, electron 463
 
  • K. Szymczyk, J.A. Lorkiewicz, R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Preparation for the construction of Polish Free Electron Laser (POLFEL) will begin shortly at National Centre for Nuclear Research (NCBJ) in Warsaw. POLFEL is planned as a fourth-generation light source driven by a superconducting (sc) electron accelerator. The concept includes an all-superconducting injector with a thin-film lead sc photocathode, dedicated to continuous wave or long-pulse linac operation. One of the issues which emerges in connection with operation of high-gradient electron guns furnished with dismountable photocathode plugs is the dark current emitted from the cathode surface inhomogeneities. The dark current usually degrades accelerator performance. The purpose of this paper is to present preliminary investigation results of the dark current generation in the electron gun with a thin lead layer deposited on a niobium plug. Specific features of geometric configuration like rounded plug edges, a gap between the plug and the back gun wall as well as cathode surface roughness have been taken into account for the electron field emission and RF field calculations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP024 Design and Research of a Micro-Pulse Electron Gun ion, electron, cavity, high-voltage 466
 
  • D.Y. Yang, B.T. Li, X.Y. Lu, W.W. Tan, L. Xiao, Y. Yang, Z.Q. Yang, J. Zhao
    PKU, Beijing, People's Republic of China
  • K. Zhou
    CAEP/IAE, Mianyang, Sichuan, People's Republic of China
 
  Micro-pulse electron gun (MPG) is a novel electron source which can produce narrow-pulse, high-repetition rate electron current. Theoretical and experiment work have been done to study physical properties and steady operating conditions of MPG. Proof-of-principle work has been finished and the next work is to research the parameters of the MPG electron beam and master the MPG work property deeply. Thus, a high voltage accelerating platform which can supply 100 kV direct voltage was designed. Furthermore, electromagnetic and mechanism designs were operated to adapt the high voltage platform and measure beam parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP025 Emittance Measurements from SRF Gun in CeC Accelerator ion, emittance, solenoid, cathode 470
 
  • K. Mihara
    Stony Brook University, Stony Brook, USA
  • Y.C. Jing, V. Litvinenko, I. Pinayev, G. Wang
    BNL, Upton, Long Island, New York, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
 
  Funding: DoE NP office, grant DE-FOA-0000632 and NSF grant PHY-1415252
In this paper we report on extremely good performance of 113 MHz SRF CW gun. This gun is a part of the system built to test coherent electron cooling concept and was aimed to generate trains of 78 kHz pulses with large 1 nC to 5 nC charge per bunch. While it was not built for attaining record low emittances, the machine can achieve very low normalized emittances ~ 0.3 mm mrad with 0.5 nC charge per bunch using CsK2Sb photocathode. In addition to excellent performance, this gun provides for very long lifetime of these high QE photocathodes, with a typical using time of 2 months.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)