Keyword: brightness
Paper Title Other Keywords Page
WEA04 Novel Concepts of a High-Brightness Photoinjector RF Gun ion, cathode, electron, gun 397
 
  • S.V. Kuzikov, O.A. Ivanov, A.A. Vikharev, A.L. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
  • S.P. Antipov
    Euclid Beamlabs LLC, Bolingbrook, USA
  • S.P. Antipov
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  We propose here a program to design and manufacture a high performance, advanced source of electrons having high beam brightness (>1016 A/m2) and high bunch charge (~100 pC). Three innovations are being considered: 1) the use of a high peak cathode field, short-pulse RF gun; 2) the use of multi-layered diamond photocathode at low temperature; and 3) the utilization of THz ultrafast field emission gating. High peak cathode field is necessary to achieve a high brightness (low emittance) beam to be accelerated to relativistic energies before space-charge effects lengthen the bunch. The multilayered diamond photocathode is needed to obtain high QE with long wavelength laser in the first doped layer, beam cooling in the next layer, and negative electron affinity at the emission layer. High field single cycle THz pulses, produced by means of laser light rectification in a nonlinear crystal, allow to avoid a UV laser, provide high field emission charge (up to nC) and ~1 GV/m pre-acceleration of subpicosecond bunches.  
slides icon Slides WEA04 [4.039 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEA04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA05 Higher Fields and Beam Energies in Continuous-Wave Room-Temperature VHF RF Guns ion, gun, cathode, electron 401
 
  • F. Sannibale, J.M. Byrd, D. Filippetto, M.J. Johnson, D. Li, T.H. Luo, C.E. Mitchell, J.W. Staples, S.P. Virostek
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The development in the last decade of MHz-class repetition rate free electron lasers (FELs), and ultrafast electron diffraction and microscopy (UED/UEM) applications, required new gun schemes capable of generating high-brightness beams at such high rates. The VHF-Gun, a 186 MHz room-temperature continuous-wave RF photogun developed at the Lawrence Berkeley Lab (LBNL) was an answer to that need. The VHF-Gun was constructed and tested in the APEX facility at LBNL successfully demonstrating all design parameters and the generation of FEL-quality electron beams. A close version of the APEX gun is in the final phase of fabrication at LBNL to operate as the electron source for the LCLS-II, the new SLAC X-ray FEL. The recently approved upgrade of the LCLS-II towards higher energies (LCLS-II HE) and the brightness-dependent UED and UEM applications would greatly benefit from an increased brightness of the electron source. Such performance upgrade can be obtained by increasing the electric field at the cathode and the beam energy at the gun exit. In this paper, we present and discuss possible upgrade options that would allow us to extend the VHF-Gun technology towards these new goals.
 
slides icon Slides WEA05 [4.320 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEA05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP062 Optical Beam Quality Analysis of the Clara Test Facility Using Second Moment Analysis ion, undulator, FEL, electron 543
 
  • H.M. Castaneda Cortes, D.J. Dunning, M.D. Roper, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  We studied and characterised the FEL optical radiation in simulations of the CLARA FEL test facility under development at Daresbury Laboratory in the UK. In particular, we determined the optical beam quality coefficient, waist position and other source properties corresponding to different potential FEL operating modes via wavefront propagation in free space using OPC (Optical Propagation Code) and Second Moment Analysis. We were able to find the operation mode and undulator design for which the optical beam has the optimum quality at highest brightness. Furthermore, we studied the way that different properties of the electron bunches (emittance, peak current, bunch length) affect the optical beam. We are now able to understand how the optical beam will propagate from the end of the undulator and through the photon transport system to the experimental stations. This knowledge is necessary for the correct design of the photon transport and diagnostic systems.  
poster icon Poster WEP062 [0.495 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)