Author: Grimminck, D.L.A.
Paper Title Page
WEP068
Three-Dimensional, Time-Dependent Simulation of Free-Electron Lasers with Planar, Helical, and Elliptical Undulators  
 
  • H. Freund
    CSU, Fort Collins, Colorado, USA
  • P. Falgari
    Lime BV, Eindhoven, The Netherlands
  • D.L.A. Grimminck, I. Setya
    ASML, Veldhoven, The Netherlands
  • P.J.M. van der Slot
    Mesa+, Enschede, The Netherlands
 
  Free-electron lasers have been built ranging from long-wavelength oscillators through ultraviolet to hard x-ray that are either seeded or SASE. In addition, FELs that produce different polarizations ranging from linear through elliptic are currently under study. In this paper, we develop a 3D, time-dependent formulation that is capable of modeling this large variety of FEL configurations including different polarizations.* We employ a modal expansion for the optical field, i.e., a Gaussian expansion with variable polarization for free-space propagation. The formulation uses the Lorentz force equations to track particles. Arbitrary 3D representations for different undulators are implemented, including planar, helical, and elliptical. To model oscillators and allow propagation outside the undulator and interaction with optical elements, we link the FEL simulation with the optical propagation code OPC. We present detailed comparisons with experiments including (1) the LCLS, (2) the SPARC SASE FEL experiment at ENEA Frascati, (3) a seeded-tapered amplifier experiment at Brookhaven National Laboratory, and (4) the 10-kW Upgrade Oscillator experiment at Jefferson Laboratory.
* H.P. Freund, P.J.M. van der Slot, D.L.A.G. Grimminck, I.D. Setya, and P. Falgari, New J. Phys. 19, 023020 (2017).
 
 
FRB02
Theory and Simulation of FELs with Planar, Helical, and Elliptical Undulators  
 
  • H. Freund
    CSU, Fort Collins, Colorado, USA
  • L.T. Campbell
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Falgari
    Lime BV, Eindhoven, The Netherlands
  • D.L.A. Grimminck, I. Setya
    ASML, Veldhoven, The Netherlands
  • J. Henderson, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • P.J.M. van der Slot
    Mesa+, Enschede, The Netherlands
 
  Free-electron lasers (FELs) that produce different polarizations of the output radiation ranging from linear through elliptic to circular polarization are currently under study. In particular, elliptic polarizations are undergoing increased interest. In this paper, we develop an analytic model of the resonant wavelength and JJ-factor for an elliptic undulator as well as both one- and three-dimensional, time-dependent formulations that are capable of simulating elliptic undulators using the PUFFIN and MINERVA simulation codes.*,** We present an analytic model of an APPLE-II undulator that is capable of modeling arbitrary elliptic polarizations, and discuss examples of simulation results.
* J. Henderson, L. Campbell, H. Freund, and B. McNeil, New J. Phys. 18, 062003 (2016).
** H. Freund, P. van der Slot, D. Grimminck, I. Setya, and P. Falgari, New J. Phys. 19, 023020 (2017).