Author: Gog, T.
Paper Title Page
Diamond Endurance to Irradiation with X-ray Beams of Multi kW/mm2 Power Densities for XFELO Application  
  • T. Kolodziej, T. Gog, S.P. Kearney, K.-J. Kim, W. Liu, A. Said, D. Shu, Yu. Shvyd'ko, D. Walko, J. Wang
    ANL, Argonne, Illinois, USA
  • M. Baldini, W. Yang
    High Pressure Synergic Consortium, Advanced Photon Source, Lemont, USA
  • V.D. Blank, S. Terentiev
    TISNCM, Troitsk, Russia
  • P. Rigg
    Dynamic Compression Sector, Washington State University, Lemont, USA
  • S. Stoupin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  Funding: Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
X-ray science has recently been considerably shaped by the advent of modern bright and powerful x-ray sources: 3rd generation synchrotron radiation storage rings and XFELs. XFELs in the oscillator configuration (XFELO) are possible future new sources, in which x-ray beams generated by the undulator circulate in an optical x-ray cavity comprised of high-reflectance (close to 100%) diamond crystal mirrors working in Bragg backscattering. XFELOs will produce stable, fully coherent hard x-rays of ultra-high (meV) spectral purity. The average power density of the x-ray beams in the XFELO cavity is however predicted to be unprecedentedly high, about ≈15 kW/mm2. Therefore, the XFELO feasibility relies on the ability of diamond to withstand such a high radiation load and preserve its high reflectivity. We are reporting on endurance studies of the highest-quality, practically flawless synthetic diamond crystals to irradiation with power density close to that expected on the XFELO crystals. Most importantly, we are studying whether the extremely high Bragg reflectivity of meV-monochromatic x-rays from the diamond crystals in backscattering is conserved after the irradiation.