Author: Brachmann, A.
Paper Title Page
TUP058 Slippage-Enhanced SASE FEL 1
 
  • J. Wu, A. Brachmann, K. Fang, A. Marinelli, C. Pellegrini, T.O. Raubenheimer, C.-Y. Tsai, C. Yang, M. Yoon, G. Zhou
    SLAC, Menlo Park, California, USA
  • H.-S. Kang, G. Kim, I.H. Nam
    PAL, Pohang, Republic of Korea
  • B. Yang
    University of Texas at Arlington, Arlington, USA
 
  Funding: The work was supported by the US Department of Energy (DOE) under contract DE-AC02-76SF00515 and the US DOE Office of Science Early Career Research Program grant FWP-2013-SLAC-100164.
High-brightness XFEL is demanding for many users, in particular for certain types of imaging applications. Seeded FELs including self-seeding XFELs were successfully demonstrated. Alternative approaches by enhancing slippage between the x-ray pulse and the electron bunch were also demonstrated. This class of Slippage-enhanced SASE (SeSASE) schemes can be unique for FEL spectral range between 1.5 keV to 4 keV where neither grating-based soft x-ray self-seeding nor crystal-based hard x-ray self-seeding can easily access. SeSASE can provide high-brightness XFEL for high repetition rate machines not suffering from heat load on the crystal monochromator. We report start-to-end simulation results for LCLS-II project and PAL-XFEL project with study on tolerance. Performance comparison between SaSASE FEL and self-seeding FEL in the overlapping frequency range is also presented.