Author: Borrelli, S.
Paper Title Page
TUP053 The ACHIP Experimental Chambers at PSI 1
 
  • E. Ferrari, M. Bednarzik, S. Bettoni, S. Borrelli, H.-H. Braun, M. Calvi, Ch. David, M.M. Dehler, F. Frei, T. Garvey, V. Guzenko, N. Hiller, R. Ischebeck, C. Ozkan Loch, E. Prat, J. Raabe, S. Reiche, L. Rivkin, A. Romann, B. Sarafinov, V. Schlott, S. Susmita
    PSI, Villigen PSI, Switzerland
  • E. Ferrari, L. Rivkin
    EPFL, Lausanne, Switzerland
  • P. Hommelhoff
    University of Erlangen-Nuremberg, Erlangen, Germany
  • J.C. McNeur
    Friedrich-Alexander Universität Erlangen-Nuernberg, University Erlangen-Nuernberg LFTE, Erlangen, Germany
 
  Funding: Gordon and Betty Moore Foundation
The Accelerator on a Chip International Program (ACHIP) is an international collaboration, funded by the Gordon and Betty Moore Foundation, whose goal is to demonstrate that a laser-driven accelerator on a chip can be integrated to fully build an accelerator based on dielectric structures. PSI will provide access to the high brightness electron beam of SwissFEL to test structures, approaches and methods towards achieving the final goal of the project. In this contribution, we will describe the two interaction chambers installed on SwissFEL to perform the proof-of-principle experiments. In particular, we will present the positioning system for the samples, the magnets needed to focus the beam to sub-micrometer dimensions and the diagnostics to measure beam properties at the interaction point.
 
 
WEP038
Sub-Micrometer Resolution, Nanotechnology Based Wire Scanners for Beam Profile Measurements at SwissFEL  
 
  • S. Borrelli, M. Bednarzik, Ch. David, E. Ferrari, A. Gobbo, V. Guzenko, N. Hiller, R. Ischebeck, G.L. Orlandi, C. Ozkan Loch, B. Rippstein, V. Schlott
    PSI, Villigen PSI, Switzerland
 
  SwissFEL Wire scanners (WSCs) measure electron beam transverse profile and emittance with high-resolution in a minimally-invasive way. They consist of a wire fork equipped with two 5 micrometer W wires, for high-resolution measurements, and two 12.5 micrometer Al(99):Si(1) wires, to measure the beam profile during FEL operation. Although the SwissFEL WSCs resolution is sufficient for many purposes, for some machine operations and experimental applications it is necessary to improve it under micrometer scale. The WSC spatial resolution is limited by the wire width which is constrained to few micrometers by the conventional manufacturing technique of stretching a metallic wire onto a wire-fork. In this work, we propose to overcome this limitation using the nanofabrication of sub-micrometer metallic stripes on a membrane by means of e-beam lithography. This presentation focuses in the design, construction and characterization of a high-resolution WSC prototype consisting of a silicon nitride membrane onto which two gold or nickel wires, widths ranging from 2 micrometers to 0.4 micrometers, are electroplated. We will also present the preliminary electron beam tests of our prototype.