Author: Bane, K.L.F.
Paper Title Page
TUC03
High-Flux, Fully Coherent X-Ray FEL Oscillator  
 
  • K.-J. Kim, S.P. Kearney, T. Kolodziej, R.R. Lindberg, X. Shi, D. Shu, Yu. Shvyd'ko
    ANL, Argonne, Illinois, USA
  • K.L.F. Bane, Y. Ding, P. Emma, W.M. Fawley, J.B. Hastings, Z. Huang, J. Krzywinski, G. Marcus, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • V.D. Blank, S. Terentiev
    TISNCM, Troitsk, Russia
  • W.M. Fawley
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • C. Grizolli
    LNLS, Campinas, Brazil
  • W. Qin
    PKU, Beijing, People's Republic of China
  • S. Stoupin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Zemella
    DESY, Hamburg, Germany
 
  Funding: The ANL part of this work is supported by the U.S. DOE Office of Science under Contract No. DE-AC02-06CH11357 and the SLAC part under contract No. DE-AC02-76SF00515.
By optimizing the parameters of the accelerator, undulator, and the optical cavity, an XFELO driven by an 8-GeV superconducting linac is predicted to produce 10zEhNZeHn photons per pulse at the important photon energies around 14.4 keV.* This is an order of magnitude larger than that in previous designs.** With a BW of 3 meV (FWHM), rep rate of 1 MHz, and taking into account the full coherence, the spectral brightness is then 2×1026 photons per (mm2mr2 0.1\% BW), which is higher than any other source currently operating or anticipated in the future. Experiments at APS beam lines have shown that a high-quality diamond crystal can survive the power density (~15 kW/mm2) expected at the XFELO intra-cavity crystals preserving the high reflectivity.*** The compound refractive lenses can serve as the focusing element. Adding an XFELO to the suite of other FEL sources will, at a minor incremental cost but with a major scientific payoff, significantly expand the scientific capabilities at superconducting linac-based XFEL facilities, such as the European XFEL, the proposed LCLS-II High Energy upgrade and the XFEL project in Shanghai.
* W. Qin et al., this conference.
** R.R. Lindberg et al., Phys. Rev. ST Accel. Beams, vol 14, 403 (2011).
*** T. Kolodziej et al., this conference.
 
slides icon Slides TUC03 [4.956 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC05 Start-to-End Simulations for an X-Ray FEL Oscillator at the LCLS-II and LCLS-II-HE 247
 
  • W. Qin, K.L.F. Bane, Y. Ding, Z. Huang, G. Marcus, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • S. Huang, K.X. Liu
    PKU, Beijing, People's Republic of China
  • K.-J. Kim, R.R. Lindberg
    ANL, Argonne, Illinois, USA
 
  The proposed high repetition-rate electron beam from the LCLS-II and LCLS-II High Energy (LCLS-II-HE) upgrade are promising sources as drivers for an X-ray FEL Oscillator (XFELO) operating at both the harmonic and fundamental frequencies. In this contribution we present start-to-end simulations for an XFELO operating at the fifth harmonic with 4 GeV LCLS-II beam and at the fundamental with 8 GeV LCLS-II-HE beam. The electron beam longitudinal phase space is optimized by shaping the photoinjector laser and adjusting various machine parameters. The XFELO simulations show that high-flux output radiation pulses with 1010 photons and 3 meV (FWHM) spectral bandwidth can be obtained with the 8 GeV configuration.  
slides icon Slides TUC05 [3.802 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUC05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP023
Recent Developments and Plans for Two Bunch Operation with up to 1 μs Separation at LCLS  
 
  • F.-J. Decker, K.L.F. Bane, W.S. Colocho, A.A. Lutman, J.C. Sheppard
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
To get two electron bunches with a separation of up to 1 microsecond at the Linac Coherent Light Source (LCLS) is important for LCLS-II developments. Two lasing bunches up to 220 ns have been demonstrated. Many issues have to be solved to get that separation increased by a factor of 5. The typical design and setup for one single bunch has to be questioned for many devices: RF pulse widths have to be widened, BPMs diagnostic can see only one bunch or a vector average, feedbacks have to be doubled up, the main Linac RF needs to run probably un-SLEDed, and special considerations have to be done for the Gun and L1X RF.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)